
Kolmogorov complexity and games

Nikolay Vereshchagin∗

Lomonosov Moscow State University

In memoriam Andrey Muchnik (24.02.1958 – 18.03.2007)

1 Muchnik’s theorem

In this survey we consider some results on Kolmogorov complexity whose
proofs are based on interesting games. The close relation between Recursion
theory, whose part is Kolmogorov complexity, and Game theory was revealed
by Andrey Muchnik. In [10], he associated with every statement φ of Re-
cursion theory a game Gφ that has the following properties. First, Gφ is a
game with complete information between two players, Muchnik called them
Nature and Mathematician; players make in turn infinitely many moves,
every move is 0 or 1. Second, if Mathematician has a computable winning
strategy in the game Gφ then φ is true. Third, if Nature has a computable
winning strategy then φ is false.

For all natural statements φ the winning condition in the game Gφ is
defined by a Borel set (Mathematician wins if the sequence of moves made by
the players belongs to a certain Borel subset of {0, 1}N); so we assume that
this is the case. By Martin’s theorem [9] this assumption implies that Gφ is
a determined game, that is, either Nature or Mathematician has a winning
strategy. It might happen however that neither player has a computable
winning strategy. In this case we cannot say anything about validity of φ.

Muchnik’s general theorem applies to all statements on Kolmogorov com-
plexity (with no time or space restrictions on description modes). Thus we
can use Muchnik’s theorem to find out whether a statement φ on Kolmogorov
complexity we are interested in is true or false. To this end, given φ we first
find the game Gφ. Usually the game Gφ does not look very natural and
easy-to-analyze. We thus find a more natural game that is equivalent to Gφ
(sometimes it is just a reformulation of Gφ in different terms). Then we find

∗Supported by grant 06-01-00122 from RFBR. Paper written while visiting CWI, Am-
sterdam.

1

out which of the players has a winning strategy in the game Gφ. It turns out
that in all particular cases either we can find a computable winning strategy
for one of the players in Gφ (and thus we know whether φ is true or false),
or the game is so hard to analyze that we cannot find who wins Gφ at all.

Sometimes the resulting game is interesting in its own right. The goal
of this paper is to present five examples of this kind. Each example consists
of: (1) a statement φ on Kolmogorov complexity, (2) a game G used in
the proof of φ, which is usually just a reformulation of Muchnik’s game
Gφ, (3) the analysis of the game G, and (4) a proof that the existence of a
computable winning strategy in G implies that φ is true. The last item is
usually straightforward and we sometimes omit it.

In item (4) we could use also Muchnik’s general theorem. We do not do
that, as usually the direct proof it easier than the proof that the considered
game G is equivalent to Muchnik’s game Gφ. Muchnik’s general theorem
is only a source inspiration for this paper. Therefore we do not present its
exact formulation.

In the example of Section 3 the game G is very easy to analyze; the main
part of the proof of φ is thus finding an easy form of Muchnik’s game. In
Section 4, both finding G and its analysis are not easy. In the examples
of Sections 5 and 7 the resulting games are so hard that we omit their full
analysis (for some of the games from Section 7 we even do not know who
wins the game).

The next section is an introductory one. We define there plain Kol-
mogorov complexity and present its properties needed for the following sec-
tions. In Section 6 we define a priori probability and prefix Kolmogorov
complexity, which are needed to understand the meaning of the result of
Section 7. We prove in Section 6 Levin’s theorem relating a priori prob-
ability and prefix Kolmogorov complexity. The proof is also based on an
analysis of an interesting game.

The reader familiar with Kolmogorov complexity can skip Sections 2
and 6. For such readers we present here our notation introduced in those
sections. We use |x| to denote the length of a string x; we denote by
C(x),K(x),m(x) plain Kolmogorov complexity, prefix Kolmogorov com-
plexity and a priori probability of x, respectively.

2

2 Kolmogorov complexity

Compressing information

Roughly speaking, Kolmogorov complexity means “compressed size”. Pro-
grams like zip, gzip, etc., compress a given file into a presumably shorter
one. The original file can then be restored by a “decompressing” program
(sometimes both compression and decompression are performed by the same
program).

A file that has a regular structure can be compressed significantly. Its
compressed size is small compared to its length. On the other hand, a file
without regularities hardly can be compressed, and its Kolmogorov com-
plexity is close to its original size.

This explanation is very informal and contains several inaccuracies. In-
stead of files (sequences of bytes) we will consider binary strings, that is,
finite sequences of zeros and ones. Here are the more essential points: (1) We
consider only decompressing programs; we do not worry at all about com-
pression. More specifically, a decompressor is any algorithm that receives a
binary string as an input and returns a binary string as an output. If a de-
compressor D on input x terminates and returns string y, we write D(x) = y
and say that x is a description of y with respect to D. Decompressors are
also called description modes. (2) A description mode is not required to be
total. For some x, the computation D(x) may never terminate. Also we do
not put any constraints on the computation time of D: on some inputs the
program D may halt only after an extremely long time.

Using the recursion theory terminology, we say that a description mode
is a partial computable (=partial recursive) function from {0, 1}∗ to {0, 1}∗,
where {0, 1}∗ stands for the set of all binary strings. We associate with
any algorithm D whose inputs and outputs are binary strings a function d
computed by D; namely, d(x) is defined for a string x if and only if D halts
on x and d(x) is the output of D on x. A partial function from {0, 1}∗ to
{0, 1}∗ is called computable if it is associated with (=computed by) some
algorithm D. Usually we use the same letter to denote the algorithm and
the function it computes. So we write D(x) instead of d(x) unless it causes
a confusion.

Assume that a description mode (a decompressor) D is fixed. For a
string x consider all its descriptions, that is, all y such that D(y) is defined
and equals x. The length of the shortest string y among them is called the
Kolmogorov complexity of x with respect to D:

CD(x) = min{ |y| : D(y) = x}.

3

Here |y| denotes the length of the string y; we use this notation throughout
the paper. The subscript D indicates that the definition depends on the
choice of the description mode D. The minimum of the empty set is defined
as +∞, thus CD(x) is infinite for all the strings x outside the range of the
function D (they have no descriptions).

At first glance this definition seems to be meaningless, as for different D
we obtain quite different notions, including ridiculous ones. For instance, if
D is nowhere defined, then CD is infinite everywhere. A more reasonable
example: consider a decompressor D that just copies its input to output,
that is, D(x) = x for all x. In this case every string is its own description
and CD(x) = |x|.

For any given string x we can find a description mode D that is tailored
to x and with respect to which x has small complexity. Indeed, let D(Λ) = x.
This implies CD(x) = 0. It may seem that the dependence of complexity
on the choice of the decompressor makes impossible any general theory of
complexity. However, it is not the case.

Optimal description modes

A description mode is better when descriptions are shorter. According to
this, we say that a description mode (decompressor) D1 is not worse than
a description mode D2 if

CD1(x) 6 CD2(x) + c

for some constant c and for all strings x.
Let us comment on the role of the constant c in this definition. We

consider a change in the complexity bounded by a constant as “negligible”.
One could say that such a tolerance makes the complexity notion practically
useless, as the constant c can be very large. However, nobody managed to get
any reasonable theory that overcomes this difficulty and defines complexity
with better precision.

The following theorem, which states that there exists an optimal decom-
pressor, is a basis of the theory of Kolmogorov complexity.

Theorem 1 (Solomonoff [11] and Kolmogorov [5]). There is a description
mode D that is not worse than any other one: for every description mode
D′ there is a constant c such that

CD(x) 6 CD′(x) + c

for every string x.

4

A description mode D having this property is called optimal.

Proof. Recall that a description mode by definition is a computable function.
Every computable function has a program. We assume that programs are
binary strings. Moreover, we assume that reading the program bits from
left to right we can determine uniquely where it ends, that is, programs are
“self-delimiting”. Note that every programming language can be modified
in such a way that programs are self-delimiting. For instance, we can double
every bit of a given program (changing 0 to 00 and 1 to 11) and append the
pattern 01 to its end.

Define now a new description mode D as follows:

D(py) = p(y)

where p is a program (in the chosen self-delimiting programming language)
and y is any binary string. That is, the algorithm D scans the input string
from the left to the right and extracts a program p from the input. (If
the input does not start with a valid program, D does whatever it wants,
say, goes into an infinite loop.) Then D applies the extracted program p to
the rest of the input (y) and returns the obtained result. (So D is just an
“universal algorithm”, or “interpreter”; the only difference is that program
and input are not separated and therefore we need to use self-delimiting
programming language.)

Let us show that indeed D is not worse than any other description
mode P . Let p be a program computing a function P and written in the
chosen programming language. If y is a shortest description of the string x
with respect to P then py is a description of x with respect to D (though
not necessarily a shortest one). Therefore, compared to P , the shortest
description is at most |p| bits longer, and

CD(x) 6 CP (x) + |p|.

The constant |p| depends only on the description mode P (and not on x).

The same idea is used in practice. A self-extracting archive is an ex-
ecutable file starting with a small program (a decompressor); the rest is
considered as input to that program. The program is loaded into the mem-
ory and then it decompresses the rest of the file.

Note that in our construction optimal decompressor works very long on
some inputs (some programs have large running time), and is undefined on
some inputs.

5

Kolmogorov complexity

Fix an optimal description mode D and call CD(x) the (plain) Kolmogorov
complexity of the string x. In the notation CD(x) we drop the subscript D
and write just C(x).

If we switch to another optimal description mode, the change in com-
plexity is bounded by an additive constant: for every optimal description
modes D1 and D2 there is a constant c(D1, D2) such that

|CD1(x)− CD2(x)| 6 c(D1, D2)

for all x.
Could we then consider the Kolmogorov complexity of a particular string x

without having in mind a specific optimal description mode used in the defi-
nition of C(x)? No, since by adjusting the optimal description mode we can
make the complexity of x arbitrarily small or arbitrarily large. Similarly, the
relation “string x is simpler than y”, that is, C(x) < C(y), has no meaning
for two fixed strings x and y: by adjusting the optimal description mode we
can make any of these two strings simpler than the other one.

One may wonder whether Kolmogorov complexity has any sense at all.
Let us recall the construction of the optimal description mode used in the
proof of the Solomonoff–Kolmogorov theorem. This construction uses some
programming language, and two different choices of this language lead to
two complexities that differ at most by a constant. This constant is in fact
the length of the program that is written in one of these two languages and
interprets the other one. If both languages are “natural”, we can expect
this constant to be not that huge, just several thousands or even several
hundreds. Therefore if we speak about strings whose complexity is, say,
about 105 (i.e., a text of a novel), or 106 (DNA sequence) then the choice of
the programming language is not that important.

Nevertheless one should always remember that all statements about
Kolmogorov complexity are inherently asymptotic: they involve infinite se-
quences of strings. This situation is typical also for computational complex-
ity: usually upper and lower bounds for complexity of some computational
problem are asymptotic bounds.

The number of strings of small complexity

Let n be an integer. Then there are less than 2n strings x such that C(x) < n.
Indeed, let D be the optimal description mode used in the definition of
Kolmogorov complexity. Then only strings D(y) for all y such that |y| < n

6

have complexity less than n. The number of such strings does not exceed
the number of strings y such that |y| < n, i.e., the sum

1 + 2 + 4 + 8 + . . .+ 2n−1 = 2n − 1

(there are 2k strings for each length k < n).

Complexity and information

One can consider the Kolmogorov complexity of x as the amount of infor-
mation in x (we do not try to distinguish between useful and meaningless
information, a string has much information unless it has a short description).

If the complexity of a string x is equal to k, we say that x has k bits of
information. One can expect that the amount of information in a string does
not exceed its length, that is, C(x) 6 |x|. This is true (up to an additive
constant, as we have already said): C(x) 6 |x| + O(1). This inequality
implies, in particular, that Kolmogorov complexity is always finite, that is,
every string has a description.

Here is another property of “amount of information” that one can expect:
the amount of information does not increase when algorithmic transforma-
tion is performed. (More precisely, the increase is bounded by an additive
constant depending on the transformation algorithm.)

Theorem 2. For every algorithm A there exists a constant c such that

C(A(x)) 6 C(x) + c

for all x such that A(x) is defined.

Proof. Let D be an optimal decompressor that is used in the definition of
the Kolmogorov complexity. Consider another decompressor D′:

D′(p) = A(D(p)).

(We apply first D and then A.) If p is a description of a string x with respect
to D and A(x) is defined, then p is a description of A(x) with respect to D′.
Let p be a shortest description of x with respect to D. Then we have

CD′(A(x)) 6 |p| = CD(x) = C(x).

By optimality we obtain

C(A(x)) 6 CD′(A(x)) + c 6 C(x) + c

for some c and all x.

7

This theorem implies that the amount of information “does not depend
on the specific encoding”. For instance, if we reverse all bits of some string
(replace 0 by 1 and vice versa), or add a zero bit after each bit of that string,
the resulting string has the same Kolmogorov complexity as the original one
(up to an additive constant). Indeed, the transformation itself and its inverse
can be performed by an algorithm.

So we can define Kolmogorov complexity for any finite objects, like nat-
ural numbers, pairs of binary strings, finite sets of binary strings, etc. To
define Kolmogorov complexity for elements in a class L of finite objects,
fix a computable bijection π : L → {0, 1}∗ and let C(x) = C(π(x)) for
all x ∈ L. Theorem 2 guarantees that for any other computable bijection
τ : L → {0, 1}∗ we have C(π(x)) = C(τ(x)) + O(1) for all x ∈ L. Indeed,
both functions π(τ−1(p)) and τ(π−1(p)) are computable. Thus Kolmogorov
complexity is well defined (up to an additive constant) for objects in L.

A theorem, similar to Theorem 2, holds for algorithmic transformation of
several objects into one object. Let us state it for algorithmic transformation
of 2 strings into one string.

Theorem 3. For every algorithm A that has two input strings and one
output string there exists a constant c such that

C(A(x, y)) 6 C(x) + C(y) + 2 logC(x) + c

for all x, y such that A(x, y) is defined.

Proof. We can find A(x, y) given a description of A (in constant number of
bits) and minimal descriptions of x, y (in C(x) and C(y) bits, respectively).
This informal observation yields a stronger bound C(A(x, y)) 6 C(x) +
C(y) +O(1), without the term 2 logC(x), which is actually wrong.

What is wrong with this argument? Let D be the optimal description
mode that is used in the definition of Kolmogorov complexity. We try to
define the following description mode D′. If D(p) = x and D(q) = y we
consider pq as a description of xy, that is, we let D′(pq) = A(x, y). The
problem is that D′ is not well defined, as D′ has no means to separate p
from q.

To fix this bug let us prepend the string pq by the length |p| of string p (in
binary notation). This allows us to separate p and q. However, we need to
find where |p| ends, so let us double all the bits in the binary representation
of |p| and then put 01 as separator. More specifically, let bin(k) denote the
binary representation of integer k and let x be the result of doubling each
bit in x. (For example, bin(5) = 101, and bin(5) = 110011.) Let

D′(bin(|p|) 01pq) = A(D(p), D(q)).

8

Thus D′ is well defined: the algorithm D′ scans bin(|p|) while all the digits
are doubled. Once it sees 01, it determines |p| and then scans |p| digits
to find p. The rest of the input is q and the algorithm is able to compute
A(D(p), D(q)).

Now we see that CD′(xy) is at most 2|bin(|p|)|+ 2 + |p|+ |q|. The length
of the binary representation of |p| is at most log2 |p|+ 1. Therefore, xy has
a description of length at most 2 log2 |p| + 4 + |p| + |q| with respect to D′.
By optimality,

C(A(x, y)) 6 CD′(A(x, y))+O(1) 6 CD(x)+CD(y)+2 logCD(x)+O(1).

For algorithms receiving k input strings, we obtain the following inequal-
ity

C(A(x, . . . , xk)) 6 C(x1)+ · · ·+C(xk)+2 logC(x1)+ · · ·+2 logC(xk−1)+c.

Conditional complexity

When transmitting a file, one could try to save communication charges by
compressing it. The transmission could be made even more effective if an
old version of the same file already exists at the other side. In this case we
need only to describe the changes made. This could be considered as a kind
of motivation for the definition of conditional complexity of a given string x
relative to (known) string y.

A conditional decompressor is any computable function D of two argu-
ments (both arguments and the value of D are binary strings). If D(y, z) = x
we say that y is a (conditional) description of x when z is known (or relative
to z) The complexity CD(x|z) is then defined as the length of the shortest
conditional description:

CD(x|z) = min{|y| : D(y, z) = x}.

We say that (conditional) decompressor D1 is not worse than D2 if

CD1(x|z) 6 CD2(x|z) + c

for some constant c and for all x and z. A conditional decompressor is
optimal if it is not worse than any other conditional decompressor.

Theorem 4. There exist optimal conditional decompressors.

This “conditional” version of Kolmogorov–Solomonoff theorem can be
proved in the same way as the unconditional one (Theorem 1, p. 4). Again,
we fix some optimal conditional decompressor D and omit index D in the
notation.

9

3 Information distance between two strings and
on-line edge coloring of a graph

Information distance and conditional complexity

The “information distance” between strings x and y is the minimal length
of a binary string p such that that x can be effectively found from y and p,
and conversely, y can be effectively found from x and p.

To define this notion rigorously, we act as we did when we defined Kol-
mogorov complexity. For any pair A,B of algorithms (which are thought as
procedures to find x form p, y and y from x, p, respectively) define

CAB(x↔ y) = min{|p| : A(p, y) = x, B(p, x) = y}.

Similar to Solomonoff–Kolmogorov theorem, we can show that there are
optimal algorithms A,B, for which CAB is minimal up to an additive con-
stant. Fixing optimal algorithms A,B we obtain the definition of informa-
tion distance CAB(x ↔ y) between x and y. It is defined, like Kolmogorov
complexity, up to an additive constant.

The trivial lower bound for C(x ↔ y) is max{C(x|y), C(y|x)} (up to a
constant error term). Indeed, if A(p, y) = x then given p and y we can find
x thus C(y|x) 6 |p| + O(1). Similarly, C(x|y) 6 |p| + O(1) if B(p, x) = y.
The constants in O(1) notation depend on A,B.

It turns out that C(x↔ y) is close to this lower bound for all x, y, which
was proved in [1].

Theorem 5. For all x, y we have

C(x↔ y) = max{C(x|y), C(y|x)}+O(log max{C(x|y), C(y|x)}).

The edge coloring game

The proof of Theorem 5 is based on the following edge coloring game. Let
G be an undirected graph. An edge coloring of G is a mapping assigning
an integer number to each edge of G. An edge coloring is proper if every
two adjacent edges (edges sharing a common vertex) have different colors.
We want to find a proper edge coloring of a given graph G using minimum
number of colors. Let d(G) denote the degree of G (the maximal degree of
a node in G). Clearly, we need at least d(G) colors, as all edges incident to
any node must have different colors. By Vizing’s theorem (see [3, 16]) for
every graph G there is a proper edge coloring using d(G) + 1 colors.

10

We are interested, however, in how many colors we need if the graph is
not given to the coloring algorithm in advance. That is, assume that the
edges of an unknown graph appear one by one and we need to color every
edge immediately after it appears.

More specifically, let d, l be integer parameters. Consider the following
game. Players, call them Alice and Bob, make infinitely many moves in
turn. On her moves Alice generates edges of a graph (one edge per move)
so that after each of her moves the degree of the generated graph is at most
d (otherwise she looses immediately). On his moves Bob colors the edge
generated by Alice on the preceding move using one of available l colors.
Bob wins if the resulting coloring of the graph is proper (that is, every two
adjacent edges have different colors).

An analysis of the game

It is not hard to see that, in contrast to Vizing’s theorem, d + 1 colors are
not enough for Bob to win (for all d > 2). The next lemma shows that 2d−1
colors suffice.

Lemma 1. If l = 2d− 1 then Bob has a computable winning strategy in the
game.

Proof. Apply the greedy strategy: color each edge e in the first color that is
different from all colors used so far for edges adjacent to e. The edge e has
2 ends, and each of them has at most d− 1 incident edges different from e.
Thus there are at most 2(d − 1) edges adjacent to e and hence we do not
need more than 2(d− 1) + 1 colors.

Proof of Theorem 5

How do we use the lemma? Let k = max{C(x|y), C(y|x)}. Consider the
graph Gk, where nodes are binary strings, and nodes x′ and y′ are connected
by an edge if K(x′|y′) 6 k and K(y′|x′) 6 k. Clearly the degree of this graph
is less than d = 2k+1. Let Alice generate edges of this graph (enumerating
the set of pairs x′, y′ with K(x′|y′) 6 k): once she has found a new pair
such that K(x′|y′) 6 k and K(y′|x′) 6 k, she makes the next move (x′, y′).
Apply Bob’s computable strategy against Alice’s strategy. We obtain an
algorithm to color properly the graph Gk using 2d − 1 < 2k+2 colors. Call
this algorithm T , it receives k as input and it prints on its output tape all
the pairs 〈an edge of Gk, its color〉.

11

We will now design particular algorithms A,B such that

CAB(x↔ y) 6 max{C(x|y), C(y|x)},

up to a logarithmic error term (actually A will coincide with B).
Let k̂ is a self-delimiting description of k, say, k̂ = bin(k)01 where p

stands for the string p with all bits doubled, and bin(k) is the binary notation
of k. Consider the following algorithm A: on inputs k̂i and y′ it runs T (k)
and outputs x′ once T (k) prints the pair 〈(x′, y′), i〉. As both C(x|y) and
C(y|x) do not exceed k, the edge (x, y) belongs to Gk and thus A(k̂i, x) = y
and A(k̂i, y) = x for some i. Hence

CAA(x↔ y) 6 |k̂i| = k +O(log k).

By optimality, we have

C(x↔ y) 6 CAA(x↔ y) +O(1) 6 k +O(log k)

as well.

4 Producer vs. Consumer game

The number of shortest descriptions

How many minimal length descriptions can have a string x (with respect
to an optimal description mode D)? The number of such descriptions is
bounded by a constant.

Indeed, assume that there are 2m length-k descriptions of x. The number
of y’s that have at least 2m descriptions of length k is at most 2k−m. Given
m and k we can enumerate all such y’s. Hence every such y can be found
from m and its (k −m) bit index in that enumeration (k can be retrieved
from k − m and m). Thus if x has 2m descriptions of length k then its
complexity is bounded by

C(x) 6 k −m+O(logm).

For k = C(x) this implies that m is bounded by a constant.
Is an analogous statement true for approximate descriptions? We call

p an approximate description of x if the number of positions where x and
D(p) differ (that is, Hamming distance between x and D(p) is at most d) is
small. Here D is an optimal description mode in the definition of C(x).

12

More formally, let d be an integer. Let x be a binary string of length n.
Let Cd(x) denote the minimal Kolmogorov complexity of a string of length
n such that the Hamming distance between x and y is at most d. Is it true
that the number of y’s of complexity Cd(x) at Hamming distance d (or less)
from x is small? More specifically, is it bounded by a polynomial in |x|?
More generally, is it true that Cd(x) 6 k −m + O(log n + logm) whenever
there are at least 2m strings y of complexity at most k at Hamming distance
d from x? If the second question answers in positive then so does the first
one (substitute Cd(x) for k). We will show that this is indeed the case.

To see why this is not straightforward, let us try first the arguments used
in the case of precise (normal) descriptions. The number of x’s that have at
least 2m different y’s of complexity k at Hamming distance d or less from x
is bounded by

2k−mB(n, d),

where B(n, d) stands for the cardinality of a Hamming ball of radius d in
{0, 1}n. Such x’s can be enumerated given n,m, k, d and thus the complexity
of each such x is at most

k −m+ logB(n, d) +O(log n+ logm).

We need to prove that for a smaller quantity Cd(x) we have a better bound

Cd(x) 6 k −m+O(log n+ logm).

To this end we have to cover all enumerated x’s by 2k−m+O(logn+logm) balls
of radius d. Moreover, we need to produce such covering on-line. We need
to cover every enumerated x immediately, we cannot wait until all such x’s
have been enumerated, as we do not know when it happens.

As we said above, the answer to the question is positive: if x belongs
to at least 2m different Hamming balls of radius d and complexity k then
x belongs to a Hamming ball of radius d and complexity k −m + O(log n)
(up to an additive error term O(log n), the complexity of a Hamming ball
coincides with complexity of its center, thus this is an equivalent formulation
of the question). This is true not only for Hamming balls but for any family
of subsets of {0, 1}n of low Kolmogorov complexity.

Let S be an arbitrary family of subsets of {0, 1}n and k,m natural
numbers. Let C(S) denote the complexity of S regarded as a finite ob-
ject. For example, if S consist of all Hamming balls of radius d then
C(S) = O(log n+ log d) = O(log n).

13

Theorem 6 ([14]). If a string x belongs to at least 2m sets in S of complexity
at most k then x belongs to a set in S of complexity at most

k −m+O(log n+ log k + logm+ C(S)).

For instance, in the case of Hamming balls Theorem says: if x belongs
to 2m balls of radius d and complexity at most k then x belongs to a ball
of radius d and complexity at most k −m+ O(log n). (Note that the total
number of balls of fixed radius is 2n hence m 6 n and the term O(logm) is
absorbed by O(log n), as well as terms O(log k) and O(C(S)).)

The reader may wonder what happens if Kolmogorov complexity of all
sets in S is close to k. In this case the statement of the theorem just yields
an upper bound C(S) +O(log n+ log k) for m. Note that in this case C(S)
is at least k −O(1) and thus this bound is not very interesting.

To prove the theorem let us try the following argument. Let P1, . . . , PN
where N < 2k+1 be all sets in S of complexity at most k. Let T consist
of all x ∈ {0, 1}n of multiplicity > 2m in the sets P1, . . . , PN . Let us show
first that it is possible to cover T by at most N2−mpoly(n, k,m) sets of
P1, . . . , PN (here, poly(k,m, n) denotes a polynomial).

Consider the bipartite graph whose left nodes are elements of T and
right nodes are sets P1, . . . , PN . Draw an edge between x and Pi if x ∈ Pi.
The degree of each left node is at least 2m hence the number of edges in
the graph is at least 2m|T |. Thus there is a right node of degree at least
2m|T |/N . In other words, there is a set Pu that covers at least 2m|T |/N
element in T . Include in the covering any such set Pu. Then apply the same
argument to the set T \Pu in place of T and include in the covering a set Pv
that covers at least 2m/N fraction of elements in T \ Pu, and so on. Each
time the fraction of non-covered x ∈ T decreases by a factor of 1 − 2m/N .
After including 2−mNn ln 2 sets, the number of non-covered strings in T is
at most

|T |(1− 2m/N)2
−mNn ln 2 < |T |e−n ln 2 = |T |2−n 6 1.

That is, all x ∈ T are covered. (Alternatively, we could show that 2−mNn ln 2
randomly chosen sets cover T with positive probability. We prefer the de-
scribed greedy covering algorithm, as it is more constructive.)

Why this argument does not suffice? The problem is that we are not
given the set {P1, . . . , PN}. This set might have a huge Kolmogorov com-
plexity. We can only assume that a procedure to enumerate P1, . . . , PN is
available, such procedure can be described in O(log k + C(S)) bits. More
specifically, there is a non-halting algorithm with inputs k,C(S) that prints

14

out P1, . . . , PN is some order. More formally, the algorithm prints the codes
of sets P1, . . . , PN with respect to a fixed encoding of finite subsets of {0, 1}∗
by binary strings. And we do not know at which moment the last set is
printed.

The game

Thus we naturally come to the following game of two players, we call them
Producer (P) and Consumer (C). Let m,n, k, L be natural parameters. The
game consists of alternating moves by the players, each making 2k moves,
starting with P’s move. A move of P consists in producing a subset of
{0, 1}n. A move of C consists in marking some sets previously produced by
P (the number of marked sets on any move can be 0). The total number of
marked sets must not exceed L. C wins if, following every one of its moves,
every x ∈ {0, 1}n that is covered at least 2m times by P’s sets1 belongs
to a marked set. It is important that this condition is checked after every
Consumer’s move. Consumer cannot wait until all 2k sets appear.

An analysis of the game

Consumer can easily win if L = 2k: she marks every set produced by P.
On the other extreme, Producer wins if L < 2k−m and n is large enough
(specifically, we need 2n > (m + 1)2k−m): he generates 2m groups of sets,
each group has 2k−m sets and all sets within a group have a common element
and sets from different groups are disjoint2. What happens for L between
2k−m and 2k? It turns out that for most such L Consumer wins.

Lemma 2. Consumer has a winning strategy in the game provided

L = 2k−mpoly(k,m, n).

There are two proofs of Lemma 2: a constructive one and a non-constructive
one (the latter belongs to An. Muchnik). Given the above analysis of the
“off-line” version of the game, is is easier to understand the constructive
proof.

The constructive proof of the lemma. Consumer simultaneously uses k strate-
gies denoted by j = 1, 2, . . . , k. Strategy j works as follows. Divide the se-
quence of Producer’s sets into 2k−j segments of 2j sets each. After receiving

1This means that x belongs to at least 2m different Producer’s sets.
2To run this strategy, we need enough strings of length n. That’s why n should be

large. The union of sets of one group must have m+ 1 elements—one shared element and
m other elements to obtain 2m different sets.

15

each segment Q1, . . . , Q2j , consider the set T consisting of all x ∈ {0, 1}n
of multiplicity > 2m/k in the sets Q1, . . . , Q2j . Using the greedy algorithm
described above mark 2j−mkn ln 2 sets among Q1, . . . , Q2j so as to cover the
set T by marked sets.

Since there are 2k−j segments (for fixed j), the total number of marked
sets C needs to use is 2j−m2k−jkn ln 2 = 2k−mkn ln 2 (for fixed j). Summing
over all j, this comes to 2k−mk2n ln 2 marked sets.

We claim that after every move t = 1, . . . , 2k of C, each x ∈ {0, 1}n of
multiplicity 2m belongs to a marked set. Assume to the contrary, that there
is an x that has multiplicity 2m following step t of C, and x belongs to no
set marked on step t or earlier. Let t = 2j1 + 2j2 + . . . where j1 > j2 > . . .
be the binary expansion of t. The element x has multiplicity less than 2m/k
in the first segment of 2j1 sets of P, multiplicity of less than 2m/k in the
next segment of 2j2 sets, and so on. Thus its total multiplicity among t first
sets is less than k2m/k = 2m. The contradiction proves the claim.

The non-constructive proof of the lemma. The non-constructiveness of the
proof is two-fold. (1) Instead of proving that C has a winning strategy, we
will prove that P has no winning strategy (by König’s theorem one of the
players must have a winning strategy); (2) To prove that P has no winning
strategy we will design a randomized strategy for C that beats every fixed
P’s strategy with positive probability.

The randomized C’s strategy is very simple: mark each set of P with
probability p = 2−m(n + 1) ln 2. Fix a strategy S of P . It suffices to prove
that (1) with probability more than 1

2 , following each move of Consumer,
every element of multiplicity 2m or more is covered by marked sets; and (2)
with probability more than 1

2 , Consumer marks at most 2k−m+1(n+ 1) ln 2
sets.

To prove (2) note that the expected number of marked sets is p2k. Thus
by Markov’s inequality, the probability that it exceeds p2k+1 is less than 1

2 .
To prove (1) fix x ∈ {0, 1}n and estimate the probability that there is

move of C following which x is covered 2m times by sets of P but belongs
to no marked set. We need to show that this happens with probability
less than 2−n−1. To this end denote by Ri the event “following a move
of C, string x is covered at least i times by sets of P but none of them is
marked”. Let us prove by induction that Prob[Ri] 6 (1 − p)i. For i = 0
the statement is trivial. To prove the induction step we need to show that
Prob[Ri+1|Ri] 6 1 − p. Let z = z1, z2, . . . , zs be a sequence of decisions by
C: zj = 1 if C marks the jth set of P and zj = 0 otherwise. Call z bad if
following C’s sth move it happens for the first time that x belongs to i sets

16

of P but none of them is marked. Then Ri is the disjoint union of the events
“C has made the decisions z” (denoted by Qz) over all bad z. Thus it is
enough to prove that Prob[Ri+1|Qz] 6 1 − p. Given that C has made the
decisions z, the event Ri+1 means that after those decisions the strategy S
will ever produce i+ 1st set including x but C will not mark it. C’s decision
not mark that set does not depend on all previous decisions and is made
with probability 1− p. Hence

Prob[Ri+1|Qz] = Prob[P produces i+ 1st set including x|Qz]·(1−p) 6 1−p.

The induction step is proved. By the choice of p we have Prob[R2m] 6
(1 − p)2m < e−p2

m
= 2−n−1. By union bound the probability that some x

of length n belongs to 2m Producer’s set but does not belong to a marked
set is at most 1/2.

Proof of Theorem 6

The strategy of Lemma 2 can be found by the brute force search given n, k
and m and S. Enumerate the sets in S of complexity at most k, and consider
appearing sets as the moves of the Producer. Use the strategy of Lemma 2
against it. We will mark at most 2k−mpoly(m, k, n) of the generated sets
that cover all the strings of multiplicity 2m, i.e., that are covered 2m times
by the generated sets. We do not know when the last generated set appears,
but the winning rule ensures that following our next move, all the strings
of multiplicity 2m will be covered. The complexity of each marked set is
bounded by the logarithm k −m + O(log k + log n + logm) of the number
of marked sets plus the amount of information needed to run the whole
process. The latter is O(log k + logm+ log n).

5 Naming branches in a growing tree

Kolmogorov complexity of computable infinite 0-1-sequences

Let ω be an infinite sequence of zeros and ones. The sequence ω is called
computable if there is an algorithm that on input n finds nth bit of ω.
(Equivalently, there is an algorithm that on input n computes the length-n
prefix of ω.)

Let ωn denote the length-n prefix of ω. There is the following criterion
of computability of ω in terms of Kolmogorov complexity:

ω is computable ⇔ C(ωn|n) = O(1). (1)

17

This result is attributed in [8] to A.R. Meyer (see also [17, 7]). Our goal is
to investigate quantitative versions of Meyer’s criterion.

The following two natural complexity measure are related to the left
hand side of (1). Fix a programming language and let U(p, n) denote the
output of the program p on input n (here p is a binary string and n a natural
number). Define

CU (ω) = min{|p| : U(p, n) = ωn for all n},

and

C̃U (ω) = min{|p| : U(p, n) = ωn for all but finitely many n},

Clearly, Solomonoff-Kolmogorov theorem holds both for complexities CU (ω), C̃U
as well. Fixing an optimal programming language we obtain complexity
measures C(ω), C̃(ω) of an infinite binary sequence ω. Both C(ω), C̃(ω) are
finite if and only if ω is computable. These two complexities correspond to
the left hand side of the equivalence (1).

The right hand side of (1) corresponds to the following two complexity
measures:

M(ω) = max
n

C(ωn|n) and M̃(ω) = lim sup
n

C(ωn|n).

Both these quantities are finite if and only if C(ωn|n) is bounded by a
constant.

Obviously, M(ω) 6 C(ω) + O(1) and M̃(ω) 6 M(ω). In terms of the
introduced complexity measures, Meyer’s criterion reads: for every f ∈
{C, C̃} and every g ∈ {M,M̃},

f(ω) <∞⇔ g(ω) <∞.

The question is: how we can upper bound f(ω) in terms of g(ω) and vice
versa?

It is a straightforward from the definition that M(ω) < C(ω)+O(1) and
M̃(ω) < C̃(ω) + O(1), which is a quantitative version of the easy part of
Meyer’s criterion. What about the converse inequalities? It is not very sur-
prising and not hard to prove that C(ω) is not bounded by any computable
function of M(ω).3 However, for C̃(ω), M̃(ω) the situation is quite different.
We have M̃(ω) 6 2C̃(ω) +O(1) and this inequality is tight.

Theorem 7 ([2]). For all ω we have C̃(ω) < 2M̃(ω) +O(1). On the other
hand, for every m there exists a sequence ω such that M̃(ω) 6 m + O(1)
and C̃(ω) > 2m.

3One can show also that M(ω) (and hence C(ω)) is not bounded by any computable
function of C̃(ω).

18

The game

The game corresponding to this theorem is as follows. Let k, l be integer
parameters. On her moves Alice enumerates a set of strings T that must
have at most k strings of each length. More specifically, in his turn Alice may
include a finite number of binary strings in the set T , which is empty at the
start of the game. Every string included in T cannot be removed from T on
later steps. On his moves, Bob defines l functions h1 . . . , hl from N to {0, 1}∗;
in his turn Bob can define each of h1 . . . , hl on any finite set of arguments.
Once hi(n) is defined, it cannot be changed on later steps. The game lasts
infinitely long. After having done infinitely many moves Alice has defined a
set T and Bob has defined partial functions h1, . . . , hl : N→ {0, 1}∗.

Bob wins if the following holds. Call an infinite binary sequence ω a
branch of T if almost all prefixes of ω are in T . Bob wins if for every branch
ω of T there is i such that hi(n) is defined and equal to ωn for almost all n.
(We call such i a name of ω.)

Call this game the k, l-game. For each k, l the winning rule in k, l-game
is defined by a Borel set. By Martin’s theorem [9] every Borel game is
deterministic. In particular, for each k, l either Alice, or Bob has a winning
strategy in k, l-game.

An analysis of the game

As T has at most k strings of each length, T has at most k branches. (Indeed,
if T had k + 1 branches, for large enough n the length-n prefixes of those
branches would be pair-wise different strings of length n in T .) Alice can
easily construct a set T having exactly k branches. As different branches
must have different names, Alice wins if l < k. On the other hand, it is even
not evident that for every k there is l such Bob wins in k, l-game.

It turns out that the border line separating (k, l)-games won by Alice
and Bob is close to the parabola l = k2, which implies Theorem 7. More
specifically, Theorem 7 follows more or less directly from the following lem-
mas.

Lemma 3. For every k Bob has a computable winning strategy in the k, k2-
game (the winning algorithm has k as an input).

Lemma 4. Alice has a computable winning strategy in the k, k2/4-game (the
winning algorithm has k as an input). Moreover, Alice’s winning strategy
always constructs a tree (if x is a prefix of y ∈ T then x ∈ T). This
implies that we can require the inequality M(ω) 6 m + O(1) instead of
M̃(ω) 6 m+O(1) in Theorem 7.

19

We will present here Muchnik’s proof of Lemma 3 and will omit the proof
of Lemma 4, as it is too involved.

Proof of Lemma 3. Bob’s functions will be indexed by pairs a, b, where a
and b are natural numbers in the range 1, . . . , k. Let us explain how Bob
defines hab(n). Observing the growing set T , Bob looks for all pairs of strings
u and v such that:

(a) the ordinal number of u in the lexicographic ordering of all (already
appeared) strings of length |u| in T is a;

(b) the ordinal number of v in the reverse lexicographic ordering4 of all
(already appeared) strings of length |v| in T is b;

(c) u is a prefix of v.

After such a pair of strings is found, Bob sets hab(n) = un (length-n prefix
of u) for all n 6 |u| such that hab(n) has not been defined yet. Then Bob
looks for another pair of strings u and v with the same properties, etc.

Let T be the set constructed by Alice after infinite number moves. We
need to prove that this strategy guarantees that at the end of the game any
infinite branch in T has a name. Let ω be an infinite branch, so ωn ∈ T for
all sufficiently large n. For these n let an denote the lexicographic number
of ωn in the set Tn of all strings of length n that are in T , and let bn
denote the reverse lexicographic number of ωn in Tn. Let a = lim sup an and
b = lim sup bn. We claim that for all sufficiently large n, hab(n) = ωn.

It is easy to see that hab(i) is defined for all i. In other words, for all
i there is a pair u, v satisfying the above conditions and such that |u| > i.
According to the definition of a and b there are infinitely many n such that
an = a and infinitely many m such that bm = b. Choose a pair of such
n and m; assume that i 6 n 6 m. The strings u = ωn and v = ωm will
be discovered after all strings of length n and m appear in T . These u, v
qualify all the conditions listed above. (Note that this does not prove that
hab(i) = ωi, as we might find a pair u, v that is different from the specified
pair.)

It remains to prove that for all sufficiently large n we have hab(n) = ωn
provided hab(n) is defined. Fix N such that an 6 a and bn 6 b for all
n > N . We will show that if both |u| and |v| are at least N and u, v
satisfy the conditions listed above then u is a prefix of ω. Indeed, the

4We say that x is less that y w.r.t. the reverse lexicographic ordering if y < x w.r.t.
the normal lexicographic ordering.

20

inequality a|u| 6 a implies that ω|u| 6 u w.r.t. the lexicographical ordering.5

Similarly, the inequality b|v| 6 b implies that v 6 ω|v| w.r.t. the same
(normal lexicographical) ordering. The latter implies that v|u| 6 ω|u| and
hence v|u| 6 ω|u| 6 u. Therefore, the only chance for u to be a prefix of v is
when both u and v|u| are prefixes of ω.

We omit the proof that Lemmas 3 and 4 imply Theorem 7. This proof
is rather straightforward. For the first statement of the theorem we fix
Alice’s strategy in 2M̃(ω)+1, 22(M̃(ω)+1)-game (she includes in T all x with
C(x|n) 6 M̃(ω), here n stands for the length of x) and use Bob’s computable
winning strategy of Lemma 3 against it. For the second statement of the
theorem we fix Bob’s strategy in 2m+1, 22m-game (he indexes his functions
by strings of length less than 2m and lets hp(n) = U(p, n)) and use Alice’s
computable winning strategy of Lemma 4 against it.

6 Prefix complexity and a priori measure

Randomized algorithms and lower semi-computable semimeasures

Let M be an algorithm (=machine) with one infinite input tape and one
infinite output tape. At the start the input tape contains an infinite binary
sequence ω called the input to M . The output tape is empty at the start.
We say that the algorithm M on an input ω prints a natural number n if M
halts after having printed n (say in binary notation) followed by a certain
marker on the output tape. In this case we write M(ω) = n.

Consider the uniform probability distribution on inputs to such algo-
rithm. The algorithm then becomes a randomized (=probabilistic) algo-
rithm without input whose outputs are natural numbers.

Speaking formally, the probability that such algorithm M prints a result
n is defined as follows. Consider the uniform Bernoulli distribution on the
space Ω of all infinite 0-1-sequences. The measure of the set Ωu of all infinite
continuations of a finite string u is equal to 2|u|. Consider the set A = {ω |
M(ω) = n}. This set is the union of intervals Ωp over all strings p such that
M prints n after having scanned p on its input tape. The probability that
M outputs n is equal to the measure of this set.

Consider an example: the algorithm reads the input sequence ω until it
encounters a 1 and then outputs the number of scanned 0s and halts. The

5Indeed, item (a) implies that there are at least a strings of length |u| in the resulting
set T (at the end of the game) that are less than or equal to u. Thus the string ω|u| cannot
be greater than u, as otherwise a|u| > a.

21

probability pn of the event “the output is n” is equal to 2−n−1.
We assign to every probabilistic machine (having no input and producing

natural numbers) a sequence p0, p1, . . . of real numbers: pn is the probability
that the machine prints the number n. We say that the probabilistic machine
generates the sequence p0, p1,

Which sequences p0, p1, . . . can be obtained in this way? There is an
obvious necessary condition:

∑
pi 6 1 (since the machine cannot produce

two different outputs). However, this inequality is not sufficient, as there are
countably many randomized algorithms and uncountably many sequences
satisfying this condition.

A sequence p0, p1, p2, . . . is called lower semi-computable if there is a
function p(i, n), where i, n are integers and p(i, n) is either a rational number
or −∞, with the following properties: the function p(i, n) is non-decreasing
in the second argument:

p(i, 0) 6 p(i, 1) 6 p(i, 2) 6 . . . ,

and
pi = lim

n→∞
p(i, n)

for all i.
An equivalent definition: a sequence p0, p1, p2, . . . is lower semi-computable

if the set of all pairs 〈r, i〉, where i is an integer and r is a rational number
less than pi, is computably enumerable (a set is called computably enumer-
able if there is an algorithm without input that prints on its output tape all
elements from the set in some order, and no other elements). The following
lemma identifies the class of all generatable sequences (we omit its proof).

Lemma 5. A sequence p0, p1, p2, . . . is generated by a probabilistic algorithm
if and only if it is lower semi-computable and

∑
pn 6 1.

Any sequence pi satisfying the conditions of the previous lemma is called
a lower semi-computable semimeasure (or enumerable from below semimea-
sure) on N. We thus have two alternative definitions of a lower semi-
computable semimeasure: (1) a probability distribution generated by a ran-
domized algorithm; (2) a lower semi-computable sequence of non-negative
reals whose sum does not exceed 1. 6

6The word “semimeasure” may look strange, but unfortunately there is no other ap-
propriate term in the literature. Dropping semi-computability requirement, one can call
any function i 7→ pi with

∑
i pi 6 1 a semimeasure on N. Every semimeasure on N de-

fines a probability distribution on the set N ∪ {⊥} where ⊥ is a special symbol meaning
“undefined”. The probability of the number i is pi and the probability of ⊥ is 1−

∑
i pi.

22

We have considered so far (lower semi-computable) semimeasures on the
natural numbers. The definition of a lower semi-computable semimeasure
can be naturally generalized to the case of binary strings or any other con-
structive objects in place of natural numbers. For example, to define a
notion of a lower semi-computable semimeasure on the set of binary strings
we have to consider probabilistic machines whose output is a binary string.

The a priori probability

Comparing two semimeasures on N we will ignore multiplicative constants.
A lower semi-computable semimeasure m is called maximal if for any other
lower semi-computable semimeasure m′ the inequality m′(i) 6 cm(i) holds
for some c and for all i.

Theorem 8. There exists a maximal lower semi-computable semimeasure
on N.

Proof. We have to construct a probabilistic machine M with the following
property. The machine M should print every number i with a probability
that is at most constant times less than the probability that any other
machine M ′ prints i (the constant may depend on M ′ but not on i).

Let the machine M pick at random a probabilistic machine M ′ and then
simulate M ′. The probability to pick each machine M ′ should be positive.
If a machine M ′ is chosen with probability p then M will print a number i
with probability at least p · (the probability that M ′ prints i). Thus one can
let c = 1/p.

It remains to explain how to implement the random choice of a proba-
bilistic machine. Enumerate all the probabilistic machines in a natural way;
let M0,M1,M2, . . . be the resulting sequence. We toss a coin until the first
1 appears. Then we simulate the machine Mi where i is the number of zeros
preceding the first 1.

Fix any maximal lower semi-computable semimeasure p0, p1, p2, . . . on
natural numbers. We will use the notation m(i) for pi and the notation m
for the semimeasure itself. The value m(i) is called the a priori probability
of i.7 Here is an explanation of this term. Assume that we are given a device
(a black box) that after being turned on produces a natural number. For
each i we want to get an upper bound for the probability that the black box
outputs i. If the device is a probabilistic machine then a priori (without
any other knowledge about the box) we can estimate the probability of i as

7Another name for m is the universal semimeasure on N.

23

m(i). This estimate can be much more than the unknown true probability,
but only O(1) times less than it.

The a priori probability of a number i is closely related to its complexity.
Roughly speaking, the less the complexity is, the larger the a priori prob-
ability is. More specifically, a slightly modified version of complexity (the
so-called prefix complexity) of i is equal to the minus logarithm of m(i).

Prefix Kolmogorov complexity

The difference between prefix complexity and plain complexity can be ex-
plained as follows. Defining prefix complexity, we consider only “self-delimiting
descriptions”. This means that the decoding machine does not know where
the description ends and has to find this information itself. Let f be a
function whose arguments and values are binary strings. We say that f is
prefix-stable, if the following holds for all strings x, y:

f(x) is defined and x is a prefix of y ⇒ f(y) is defined and is
equal to f(x).

Theorem 9. There exists an optimal prefix-stable decompressor (for the
family of all prefix-stable decompressors).

We omit the proof of this theorem. Let us fix some optimal prefix-
stable decompressor D and let K(x) denote CD(x). We call K(x) the prefix
complexity of x. As well as the plain complexity, the prefix complexity is
defined up to an O(1) additive term.

It is easy to see that K(x) and C(x) differ by a logarithmic additive
term:

C(x) 6 K(x) +O(1) 6 C(x) + 2 logC(x) +O(1).

The first inequality here is straightforward as the class of all decom-
pressors, used in the definition of C(x), includes the class of all prefix-free
decompressors, used in the definition of K(x). To prove the second in-
equality it suffices to construct a prefix free decompressor D′ such that
CD′(x) 6 C(x) + 2 logC(x) +O(1).

Fix an optimal decompressor D used in the definition of the plain com-
plexity. Let decompressor D′ be defined on all strings of the form n̂pq where
n is the length of p and D(p) is defined, and q is arbitrary string.8 For such
inputs we let D′(n̂pq) = D(p). The function D′ is well defined: if a string

8Notation n̂ refers to the “self delimiting” description of a natural number n in 2 logn+
O(1) bits.

24

has two different representations n̂pq = n̂′p′q′ where n = |p| and n′ = |p′|
then n = n′ and thus pq = p′q′. The latter implies that p = p′.

By construction D′ is a prefix-stable function. As the length of n̂p is
|p|+ 2 log n+O(1) we have CD′(x) 6 CD(x) + 2 logCD(x) +O(1).

Prefix complexity and a priori probability

Now we can state the relation between the a priori probability of a string x
and its complexity:

Theorem 10. K(x) = − logm(x) +O(1).

We present a sketch of proof of this theorem. The statement of the
theorem is a conjunction of two inequalities.

− logm(x) 6 K(x) +O(1), K(x) 6 − logm(x) +O(1).

The first of them follows directly from the fact that the function 2−K(x) is
a lower semi-computable semimeasure, which is easy to verify. The proof of
the converse inequality, uses a certain game.

The semimeasure m(x) is lower semi-computable, so we can generate
lower bounds for m(x) that converge to m(x) but no estimates for the ap-
proximation error are given. The larger m(x) is, the smaller K(x) should be,
that is, the shorter description p we have to provide for x. The descriptions
reserved for different strings must be incompatible. (The descriptions p1 and
p2 are incompatible if the intervals Ωp1 and Ωp2 are disjoint. Recall that the
interval Ωp consists of all infinite binary sequences beginning with p.) The
inequality |p| 6 − log2m(x) means that the measure of the interval Ωp is
at least m(x): 2−|p| > m(x). Thus we have to assign to every string x an
interval of measure at least m(x) so that the intervals assigned to different
strings do not overlap. Actually, it suffices to reserve an interval of the
length εm(x) rather than m(x), for some fixed positive ε. This relaxation
causes the complexity increase at most by a constant.

The space allocation game

So we arrive to the following game between two players, called Client and
Server. Fix a positive rational number ε. Client defines an infinite sequence
a(1), a(2), . . . of non-negative reals. At the start of the game all a(i) are
zeroes. In her turn Client may increase any a(i) by a rational value so that∑

i a(i) 6 1 (if after some Client’s move this sum becomes greater than 1,
she looses immediately).

25

In his turn Server defines a mapping h : {0, 1}∗ → {1, 2, . . . }. At the
start of the game h is undefined on all arguments. On each move Server may
define h on a new argument (previously defined values cannot be changed).
If h(p) = i then we say that Server has allocated Ωp to ith job and the value
a(i) will be called space request for ith job.

If intervals Ωp and Ωq are allocated to different jobs then Ωp and Ωq must
be disjoint (otherwise Server looses immediately after that has happened).

Players make in turn infinitely many moves. Server wins the game if (at
the end of the game) for every i he has allocated to ith job an interval Ωp

of measure at least εa(i). Let us stress that Client is interested not in the
total space allocated to every job, but in the largest interval, which makes
“space management” job difficult.

Clearly, Client wins this “space allocation” game provided ε > 1. More-
over, Client wins if ε > 1/2. Let us show this, say, for ε = 9/16. Client
requests 1/9+δ of space for each of the first 8 jobs, where δ a small number.
Server has to allocate an interval of measure ε(1/9 + δ) > 1/16 to each of
them. So each of 8 jobs is allocated an interval of measure 1/8, which means
the entire space Ω is exhausted. If δ is small enough, the sum of all requests
is still less than 1 and Client requests a small amount of space for the ninth
job, which Server is unable to allocate.

In this example Client has not used her right to increase requests many
times. Using this option Client can win the game for ε = 1/2 and even for
some ε < 1/2. However for ε = 1/4 the game is won by Server.

Lemma 6. Server has a computable winning strategy in the described game
for ε = 1/4.

Proof. 9 The main idea is as follows: Server takes into account only those
increases of requests when a(i) becomes greater than a number of the form
2−j . If on step t certain a(i) becomes greater than 2−j we allocate to client
i a fresh interval (an interval that is disjoint with all previously allocated
intervals) of measure bt = 2−j−1. (If on step t no a(i) becomes greater than
a number of the form 2−j , then we let bt = 0 and do not allocate any space
on that step.)

Before to describe the allocation strategy note that the total space we
will allocate to job i does not exceed the sum

2−j−1 + 2−j−2 + 2−j−3 + · · · = 2−j < a(i),

where j is the integer numbers with 2−j < a(i) 6 2−j+1. This shows that∑
bt 6 1 provided

∑
i a(i) 6 1 (Server will not run out of space). In

9The proof is similar to the proof of the so called Kraft–Chaitin lemma, see [4].

26

particular, at any moment of the game, the total measure bt+1 + bt+2 + . . .
we have to allocate on future steps does not exceed the total measure of
unallocated space.

The allocation strategy is as follows: we maintain the representation of
the free space (part of Ω that is not allocated) as the union of intervals
of different measures. Initially this list contains one interval Ω. Assume
that we need to allocate an interval of measure w = 2−j−1 to a job. First
note that one of the free intervals has measure at least w. Indeed, the total
measure of free intervals is at least w provided

∑
i a(i) 6 1. If all the free

intervals had measures smaller than w, their total measure would be less
than w since they have different measures and the sum of powers of 2 less
than w is less than w.

If there is a free interval in the list that has measure exactly w, our
task is simple. We just allocate this interval and delete it from the free list
(maintaining the invariant relation).

Assume that this is not the case. Then we have some intervals in the
list that are bigger than requested. Using the best fit strategy, we take the
smallest among these intervals. Let w′ > w be its length. Then we split free
interval of measure w′ into intervals of measure w,w, 2w, 4w, 8w, . . . , w′/2
(note that w + w + 2w + 4w + 8w + . . . + w′/2 = w′. The first interval (of
measure w) is allocated, all the other intervals are added to the free list. We
have to check out the invariant relation: all new intervals in the list have
different measures starting with w and up to w′/2; old free intervals cannot
have this measure since w′ was the best fit in the list.

Let us prove that Server wins. Let a(i) denote the space request for ith
job at the end of the game. Assume that a(i) is positive and let j be the
integer numbers with 2−j < a(i) 6 2−j+1. At some time in the game a(i)
becomes larger than 2−j and Server then allocates an interval of measure
2−j−1 > a(i)/4 to ith job.

Let us finish the proof of Theorem 10. Let Client lower semi-compute
the a priori probability m(i) so that after any her move a(i) is equal to
the best lower bound of m(i) discovered up to that time. Let Server use
the computable strategy of Lemma. Then he defines a computable function
h(p) such that Ch(i) 6 − logm(i) + O(1). That function can be extended
to a computable prefix stable decompressor D by letting D(pq) = h(p) for
all p, q. Thus we have K(i) 6 CD(i) +O(1) 6 − logm(i) +O(1).

27

7 Solovay’s theorem and “cats vs. ants” game

Prefix complexity and a priori probability of enumerable sets

Kolmogorov complexity (as well as prefix complexity and a priori probabil-
ity) can be defined for algorithm problems of a very general type. Roughly
speaking, Kolmogorov complexity of an algorithmic problem is the minimal
length of a program that solves that problem, with respect to an optimal
programming language. From this viewpoint the plain complexity C(x) is
the complexity of the algorithmic problem “print x”.

In this section, we will focus on algorithmic problems of the type “enu-
merate the set A” (where A is a computably enumerable set of natural
numbers). The following definitions are attributed by Solovay in [12] to G.
Chaitin (wee keep Solovay’s notations).

First we define prefix complexity I(A) of the problem “enumerate A”.
Let M be an algorithm with one infinite input tape and one infinite output
tape. At the start the input tape contains an infinite binary string ω called
the input to M . The output tape is empty at the start. We say that a
program p enumerates a set A ⊂ N = {1, 2, . . . } with respect to M , if in the
run on every input ω extending p the algorithm M prints all the elements of
A in some order and no other elements. We do not require M to halt in the
case when A is finite.10 Let IM (A) denote the minimal length of a program
enumerating A.

There is an algorithm M0 (called a universal algorithm) such that for
every other algorithm M there is a constant c such that

IM0(A) 6 IM (A) + c

for all A ⊂ N. This is proved just as Solomonoff–Kolmogorov theorem. Fix

any such M0 and call I(A)
def
= IM0(A) the complexity of enumeration of

A. This complexity, like the plain Kolmogorov complexity, depends on the
choice of the universal algorithm and is defined up to an additive constant.

Second, define the a priori probability distribution on enumerable sets.
Let M be an algorithm with one infinite input tape and one infinite output
tape as described above. For every infinite 0-1-sequence ω let M(ω) denote
the set enumerated by M when ω is written on its input tape. For every
A ⊂ N consider the probability

pM (A) = Prob[M(ω) = A].

10In the case of finite sets any such program is called an implicit description of A, as
opposed to explicit description of A when M is required to halt after having printed the
last element of A.

28

We say that M generates pM . A theorem of de Leeuw, Moore, Shannon
and Shapiro [6] states that if pM (A) > 0 for some algorithm M then A is
enumerable.

The class of generatable distributions has a maximal one up to a multi-
plicative constant. In other words, there is a algorithm M1 (called optimal)
such that for every algorithm M there is a constant c such that

c · pM1(A) > pM (A)

for all A ⊂ N. This is proved just as the theorem on existence of maximal
lower semi-computable semimeasure on natural numbers.

Fix any optimal M1 and call m(A)
def
= pM1(A) the a priori probability

of enumerating A. The a priori distribution thus depends on the choice of
the optimal algorithm and is defined up to a multiplicative constant. Let
H(A) denote the negative binary logarithm of the a priori probability of A:
H(A) = d− logm(A)e.

Comparing M0, the algorithm defining I(A), with M1, the algorithm
defining m(A), we see that

H(A) = d− log pM1(A)e 6 IM1(A) 6 IM0(A) +O(1) = I(A) +O(1)

for allA. Solovay [12] has proved that conversely I(A) 6 3H(A)+O(logH(A))
for all A, which can be viewed as a sharpening of de Leeuw et al.’s result.
It is unknown whether we can replace the constant 3 in this inequality by a
smaller constant. In the case of finite sets we can do it.

Theorem 11 ([15]). For every finite set A ⊂ N we have I(A) 6 2H(A) +
O(logH(A)).

The proof of Theorem 11 is based on a computable winning strategy in
the following game.11

Ants versus cats game

The game is specified by a positive rational number ε and a natural number
k. Consider finite subsets of N as nodes on the infinite directed graph, where
there is an arc from a set A to a set B if A is a proper subset of B.

Imagine that certain very tiny animals, like ants, and also some medium
size animals, like cats, move along edges of this graph. At the start of the

11The proof of Solovay’s theorem is also based on a game. That game is more compli-
cated and we omit it in this survey.

29

game all ants and cats are in the initial node ∅. We regard ants as infinitely
divisible. The cats are not divisible and there are k of them.

The movements of cats are controlled by Alice, and the movements of
ants by Bob. Players make alternative moves (say, Bob starts). In his turn
Bob may make a finite number actions of the following type: move any
portion of ants from a node A to a node B that is reachable from A along
edges of the graph. In her turn Alice may make a finite number actions of
the following type: move a cat to a new node, also only along edges of the
graph.

The game lasts infinitely long. Alice wins if after each of her moves there
is a cat in every node where the fraction of ants is at least ε. Call this game
the k, ε-game. We will assume that 1/ε is integer.

Analysis of the game

Clearly, if k < 1/ε then Bob wins k, ε-game. Indeed, on the first move, Bob
can move a fraction ε of ants in all the nodes {1}, {2}, . . . , {1/ε}. After her
first move Alice looses, as she have not enough cats to put them in all these
nodes.

It is not hard to see, however, that 1/ε cats are not enough for Alice
to win. For example, Bob can win 1/4, 4-game as follows. Bob first moves
1/4 of ants in each of the nodes {1}, {2}, {3}, {4}, forcing cats to move in
those nodes. Then 1/4 of ants move to the node {1, 2} and another 1/4
of ants to the node {3, 4}. The remaining amount of ants in each of nodes
{1}, {2}, {3}, {4} is 1/8. Alice has to move a cat to each of the nodes {1, 2}
and {3, 4}. Say, cats leave nodes {1} and {3}. Now both these nodes have
1/8 of ants out of reach of any cat. These ants move to the node {1, 3} and
Bob wins.

On the other hand, it turns out that Alice can win with O(1/ε2) cats, and
her winning strategy is computable. Theorem 11 is basically a reformulation
of the existence of such strategy.

Lemma 7. Alice has a computable winning strategy in ε,O(1/ε2)-game.
(The winning algorithm receives ε as an input.)

Proof. 12 Let K = 1/ε. Alice will have K(K + 1)/2 cats. After each Alice’s
move each cat will be assigned a rank, which is a natural number in the
segment {1, 2, . . . ,K}. Also she will assign to each cat a subset of Ω of
measure ε, called the set of ants attended by that cat. That subset will be a
finite union of intervals.

12The presented strategy is based on Martin’s strategy in another game from [9].

30

The rank and attended ants will change time to time so that the following
be true after each Alice’s move (and at the start of the game).

1. For all r 6 K there are exactly r cats of rank r.

2. The sets of ants attended by cats of the same rank are pair-wise dis-
joint. (As there are K cats of rank K, this item implies that every ant
is attended by a cat of rank K.)

3. All ants attended by a cat are at its reach (the cat can move to the
node where that ant sits).

4. There is a cat in every node A where the amount of ants is at least ε.

At the start all K(K+1)/2 cats are in the node ∅ and ranks and attended
ants are assigned so that items 1 and 2 be true. Items 3 and 4 follow.

Ants’ movement can destroy only item 4 so we need to explain how we
restore item 4 after every Alice’s move. W.l.o.g. we may assume that item 4
has become false for only one node A. By item 2 there is a cat that attends
an ant in the node A. Choose such cat of the smallest rank, call it the chosen
one, and move it to A. We have restored item 4 for the node A (however we
might have created a similar problem for the previous location of the chosen
cat; further we will explain how to handle with that). To restore item 3
change the set of ants attended by the chosen cat to an ε fraction of ants in
the node A.

This change can violate item 2 and to restore it we change ranks as
follows. Let r denote the rank of the chosen cat. As no cat of rank r − 1
attends any ant in the node A, the set of ants attended by the chosen cat is
disjoint with sets attended by all the cats of rank r − 1. Thus we can just
swap ranks r and r − 1 (except the rank of the chosen cat).

After these actions all the items are fulfilled possibly but item 4 for the
previous location B of the chosen cat. If that case B is a proper subset of A
and we repeat the same procedure for B in place of A. After a finite number
of times the process will converge.

It is unknown what happens for k ≈ 1/εα where α is a constant between
1 and 2.

Proof of Theorem 11

We will prove a general statement that allows to translate existence of com-
putable strategies in ε, k-games to inequalities relating I(A) and H(A).

31

Lemma 8. For any constant rational α the following holds. (1) If for some
constant c Alice has a computable strategy that for all ε wins ε, c/εα-game13

then I(A) 6 αH(A) + O(logH(A)). (2) Conversely, if for some positive
δ Bob has a computable winning strategy that for arbitrarily small ε wins
ε, δ/εα-game13then I(A) > αH(A) − O(log I(A)) for infinitely many finite
sets A.

Proof. (1) Assume that Alice has a computable winning strategy in ε, c/εα-
game. Fix i and let ε = 2−i and k = c/εα. Consider the following Bob’s
strategy. Bob runs the universal machine from the definition of m(A) on all
possible random inputs for t = 1, 2, . . . steps. Every infinite sequence ω ∈ Ω
is considered by Bob as an infinitesimal ant. Ants move so that after tth
Bob’s move an ant ω sits in a node A iff the universal machine on input ω
in t steps has printed all elements of A and no other elements.

More specifically, let t be a natural number and p a string of length at
least t. Let At(p) denote the output of the algorithm on inputs with prefix p
(in t steps the algorithm cannot scan more than t input symbols, thus At(p)
is well defined). On tth move for each string p of length t all ants in the set
Ωp move from the node At−1(p) (where they were immediately after t− 1st
Bob’s move) to the node At(p). As At−1(p) ⊂ At(p), Bob does not violate
the rules of the game.

Apply Alice’s computable winning strategy against this Bob’s strategy.
Ants and cats move in a computable way. In particular, the location of cat
number j at time t can be computed given j, t and i. Let Cj stand for the
union of all nodes (i.e. sets) visited by cat number j. There is a machine
M ′ that on every input beginning with îj enumerates Cj . For this machine
it holds

IM ′(Cj) 6 2 log i+ log j +O(1) 6 2 log i+ αi+O(1)

and by universality

I(Cj) 6 IM ′(Cj) +O(1) 6 αi+ 2 log i+O(1)

for all i.
Assume now that m(A) > 2−i+1. Starting from some Bob’s move the

fraction of ants in the node A will be at least 2−i = ε. 14 Thus starting from

13The winning algorithm receives ε as an input.
14Indeed, let β denote the amount of ants that have visited the node A during the entire

game. There is t such that the amount of ants that have visited A in first t moves is at
least β − ε. On steps t+ 1, t+ 2, . . . at most ε of ants in total can arrive in A, hence on
every step t′ > t the amount of ants in A is at least m(A)− ε > 2−i+1 − ε = ε.

32

some move there is a cat in A. One of them visits A infinitely often, which
means that it sits in A starting from some time. In other words, A = Cj for
some j and

I(A) 6 2i+ 2 log i+O(1)

for everyA withm(A) > 2−i+1. Letting i be the integer part of− logm(A)/2
we obtain the proof of the first part of Theorem.

(2) Assume that for arbitrarily small ε Bob has a computable winning
strategy in ε, δ/εα-game. Thus for some constant c for infinitely many i Bob
wins 2−i, 2αi−c-game.15

Fix any such i and let Alice use the following strategy. She identifies her
cats with binary strings of length less than αi − c. She runs the universal
algorithm in the definition of I(A) in steps on all inputs of length less than
αi− c. Once she finds out that the machine on an input p prints in t steps
all elements from a set A and no other elements, she moves “cat p” to the
node A. This strategy guarantees the following property:

If A is a finite set such that I(A) < αi − c then starting from
some time there is a cat in the node A.

Apply Bob’s winning strategy against this Alice’s strategy. We can as-
sume that Bob’s strategy is “lazy”. That is, if in Bob’s turn there is a node
where the amount of ants is at least 2−i but no cat sits in that node then
the strategy just passes (does nothing). Call t good if this happens after tth
Alice’s move.

We are given that Bob wins the game. This means that there is T such
that all t > T are good. On all moves t > T ants do not move. Let
A1, . . . , AN be all nodes where the amount of ants on moves t > T is at
least 2−i. For every t > T at least one of the nodes A1, . . . , AN has no cat in
time t. Therefore, there is a node Aj that has no cat infinitely many times,
which implies I(Aj) > αi− c.

As movement of ants is computable (given i), for every i there is an
algorithm Mi such that mMi(A) coincides with the limit of fraction of ants
in node A for every finite set A.

The algorithm Mi depends on i. However, all Mi can be merged into
one algorithm M such that

mM (A) =
∑
i

mMi(A)

i(i+ 1)

15Indeed, assume that Bob has a computable winning strategy in ε, δ/εα-game. Let i be
the integer such that 2−i 6 ε < 2−i+1. Then the same strategy wins 2−i, δ2α(i−1)-game.

33

(choose i with probability 1
i(i+1) and then run Mi). For this algorithm M

for infinitely many i there is A such that

mM (A) >
2−i

i(i+ 1)
, I(A) > αi− c.

These inequalities imply that

αH(A) 6 α(i+ log i(i+ 1) +O(1)) 6 I(A) +O(log I(A)).

Acknowledgment

The author is sincerely grateful to Alexey Klimenko for reading the prelim-
inary version of the paper.

References

[1] C.H. Bennett, P. Gács, M. Li, P.M.B. Vitanyi, and W.H. Zurek. “In-
formation Distance”, IEEE Trans. on Information Theory 44 (1998),
No 4, 1407–1423.

[2] B. Durand, A. Shen, and N. Vereshchagin. Descriptive Complexity of
Computable Sequences. Theoretical Computer Science 171 (2001), p.
47–58;

[3] S. Fiorini and R. J. Wilson, Edge-colorings of graphs, Pitman 1977.

[4] Gregory Chaitin, ”A theory of program size formally identical to in-
formation theory,” Association for Computing Machinery Journal, vol.
22, 1975, pp. 329-340.

[5] Kolmogorov A. N., Three approaches to the quantitative definition of
information. Problems Inform. Transmission, 1(1):1–7, 1965.)

[6] K. de Leeuw, E. F. Moore, C. E. Shannon, and N. Shapiro, Computabil-
ity by probabilistic machines, In: C. E. Shannon and J. McCarthey
(Eds.), Automata Studies, Princeton University Press, Princeton, New
Jersey, 1956, 183–212.

[7] M. Li, P. Vitanyi. An Introduction to Kolmogorov Complexity and its
Applications. Second edition. Springer Verlag, 1997.

[8] D.W. Loveland. “A variant of Kolmogorov concept of Complexity”,
Information and Control, 15:510–526, 1969.

34

[9] D.A. Martin, Borel indeterminacy, Ann. Math. 102 (1978) 363–371.

[10] An.A. Muchnik, On basic structures of the descriptive theory of algo-
rithms. Soviet Math. Dokl., 32, 671–674 (1985)

[11] R.J. Solomonoff. “A formal theory of inductive inference, part 1 and
part 2,” Information and Control, 7:1–22, 224-254, 1964.

[12] R.M. Solovay, In: A.I. Arruda, N.C.A. da Costa, R. Chaqui (Eds.)
On Random R.E. Sets, Non-Classical Logics, Model Theory and Com-
putability, North-Holland, Amsterdam, 1977, pp. 283–307.

[13] V.A. Uspensky, A.Kh. Shen’. “Relations between varieties of Kol-
mogorov complexities,” Math. Systems Theory, 29:271–292, 1996.

[14] Nikolai K. Vereshchagin, Paul M. B. Vitanyi, A Theory of Lossy Com-
pression for Individual Data, CoRR cs.IT/0411014: (2004)

[15] N. Vereshchagin, ”Kolmogorov complexity of enumerating finite sets”
Information Processing Letters 103 (2007) 34-39.

[16] R. A. Wilson, Graphs, Colorings and the Four-color Theorem, Oxford
Univ. Pr. 2002.

[17] A.K. Zvonkin, L.A. Levin. “The complexity of finite objects and the
development of the concepts of information and randomness by means
of theory of algorithms.” Russian Math. Surveys, 25(6):83–124, 1970.

35

